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Abstract-A theoretical study is made of the effect of electrostatic fields upon the maximum heat flux 
during pool boiling on a large horizontal cylindrical heater. Use is made of the hydrodynamic approach 
to the maximum heat flux. Good agreement is obtained between the theoretical predictions and the 

experimental observations. 

NOMENCLATURE Superscripts 

A, C, D, F, H, amplitudes of perturbations; perturbations. 

B, Bond number based upon the film thickness; 

BR, Bond number based upon the heater radius; Subscripts 

Q column diameter; 

E, electric field; 

G, defined by equation (19); 

J, Bessel function; 

K, L, P, Q, S, U, coefficients; 

N, Bessel function ; 
R, column radius; 
&, RI, principal radii of curvature of the interface; 

klectrical charge density; 
speed ; 
column separation; 
nth root of Bessel function J,,,; 
vapor film thickness; 
gravitational constant; 
heat of evaporation per unit mass; 
wavenumber; 
Bessel function scale factor; 

heat flux; 
time; 

r, -y, y, 27 coordinates; 

AT, temperature difference between heater and 
liquid; 

AK voltage difference; 

V, gradient; 

V2, Laplacian. 

Greek symbols 

0, hydrodynamic potential; 

47 electrical potential; 

C, dielectric permittivity; 

?, interfacial displacement; 

A, wavelength; 
,? dr most dangerous wavelength; 

Pa density; 

Pe, electrical conductivity of the liquid; 

0, surface tension; 

t, charge relaxation time; 

q7 cylindrical coordinate. 

*Bevoegd Verklaard Navorser NFWO. 

d, most dangerous; 

f> refers to the liquid; 

93 refers to the gas; 

m, order of the Bessel function; 
max, maximum; 
min, minimum; 

n, order of the root of the J,,, Bessel function; 

0, steady-state quantity; 
x, y, z, x, y and z components; 

l,2, refers to regions 1 and 2. 

INTRODUCTION 

THE EFFECT of electric fields upon the phenomena 
occurring during boiling has been studied by several 
investigators. Bochirol et al. [l] were the first to report 
increased heat-transfer rates when applying an AC 
voltage difference between two heated wires in a 
dielectric liquid. Bonjour and Verdier [2] showed these 
effects to be due to dielectrophoresis. Choi [3] also 
observed increased heat fluxes in his experiments with 
DC fields applied to a cylindrical heater in a dielectric. 
Also here most of the increase in heat transfer is due 
to electrophoresis. Markels and Durfee measured the 
effect of a DC field upon the maximum heat flux during 
pool boiling [4] and of an AC field during forced 
convection boiling [5]. 

In the present work the effect of an electrostatic field 
upon the maximum heat flux during pool boiling will 
be studied in order to explain the large increases in the 
maximum heat flux observed in experiments. In par- 
ticular a flat plate heater located in a conducting liquid 
will be considered. The maximum heat flux will be 
determined for this configuration and will be compared 
to the data of Markels and Durfee [4]. To do this first 
the hydrodynamic theory predicting the maximum heat 

flux during ordinary pool boiling will be presented in 
the next section. This will be followed by a stability 
analysis of the vapor film covering a heater during film 
boiling, including the effect of a DC field. The results 
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of this stability analysis will be applied to the flat plate 
heater under consideration and comparison between 
theoretically predicted and experimentally observed 
maximum heat fluxes will be made. After a discussion, 
the conclusions from all this will be drawn in the last 
section of the paper. 

MAXIMUM HEAT FLUX CORRELATION 

If the temperature difference AT between a heater 
and the heated liquid is steadily increased, the heat 
flux 4 behaves in a manner as depicted in Fig. 1. After 
a region of natural convection, boiling of the liquid at 

the heater occurs. Bubbles detach from the heater and 
rise through the liquid on account of their buoyancy 
(nucleate boiling). At increasing AT a point A of 
maximum heat flux occurs. Further increase leads 
through an unstable region to a point B at which the 

heat flux is minimal. From the point B on one is in the 
region of film boiling: a vapor film completely covers 

the heater and the heat flux is considerably reduced 
compared to the nucleate regime. 

hr 

FIG. I. Heat flux as a function of the wall 
superheat AT during pool boiling. 

In the present work one is interested in the maximum 
heat flux. This quantity is of considerable importance 
since very often it represents the maximum allowable 
heat flux. Indeed, increasing the heat flux to a value 
larger than q,,, gives rise to a very high value of AT 
(point C) which may destroy the heater. 

The most successful approach to the prediction of 
the maximum heat flux is provided by the so-called 
“hydrodynamic theory”. This is based upon the obser- 

vation that the heat transported from the heater is 
contained in the heat of evaporation of the vapor. 

Furthermore it is observed that upon approaching qmax 
the vapor bubbles coalesce into vapor columns. These 
columns are spaced regularly a distance h apart (Fig. 2) 
and their diameter D is about b/2 (Zuber [6]). The 
maximum heat flux can then be approximated by 
means of the expression : 

rhi2 

in which V, is the vapor speed in the columns at the 
occurrence of qmax. 

The hydrodynamic approach then consists in finding 
a suitable value for V,. It is known that when two 

I 3 
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(“--/ 
FIN. 2. Vapor column configuration on a 

flat plate heater. 

immiscible fluids are in relative motion, their contact 
surface is unstable under the action of inertia and 
surface tension forces (Helmholtz instability). In par- 
ticular in the case of a gas flowing over a stagnant liquid 

with the speed V,, and for a horizontal interface 

between them, there exist unstable perturbations of the 
interface which grow exponentially in time. The wave- 
length of these unstable perturbations is larger than 
the wavelength 1 related to the gas speed by (see 
Lamb [7]): 

(2) 

Also the vapor-liquid interface of a vapor column is 
unstable. This leads to the well-known break-up of 
vapor columns in separate bubbles. Although the 
geometry is cylindrical here and not flat, Lienhard and 

Dhir [8] have shown that a good estimate of the value 
of V, at which instability of the column sets in is 
obtained by assuming i. to be equal to the circumference 

of the column. The radius of the column is about a 
quarter of the spacing between the columns. The only 
parameter left to be determined therefore is the column 
spacing. 

In the case of film boiling a vapor layer covers the 

heater. The vaporliquid interface thus formed is un- 

stable. The growth rate of the unstable perturbations 
depends upon their wavelength. The wavelength of the 
perturbation with the largest growth rate is called the 
most dangerous wavelength 2,. It has been observed 
that the spacing between the columns formed just 
before the maximum heat flux is reached is equal to the 
most unstable wavelength corresponding to film boiling 
over the same heater. It has also been shown in [8] 
that for cylindrical heaters one should probably take: 

i= &. 

Substituting this into (2) yields: 

(3) 

which shows that & is the only quantity which remains 
to be determined to evaluate qmax. 

For a flat plate heater & is (see [8]): 
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This last expression is valid only for zero electric field pressure and velocity fields. They can be written in 
since the stability of the film interface also depends the form : 
upon the presence of such a field. Therefore in the 
following section a new expression for ;I,,, taking into 

Pl(X, y, z, t) = PO, 1(x, y, 4 + ,h(x, y, z, 0, 

account electric field effects, will be derived. P2k Y, z, t) = Po,zk Y, 4 + lj2k Y> 6 tb 

The effect of the electric field upon the wavelength 1 Vl (x, y, z, t) = 0 + $1 (x, y, z, 0, 

which characterizes the instability of the vapor columns Yz(X, y, 2, t) = 0 + 326-G y, z, t). 

will be neglected here. The vapor columns collapse at 
a distance from the heater which is many times the film 

In the analysis it will be assumed that the perturbations 

thickness during film boiling. Considering that the field 
are small compared to the zero-order quantities 

strength, and thus the electrical surface force density, 
(linearized analysis). Considering only terms of first 

decrease rapidly away from the heater (see Appendix), 
order in the perturbations, the momentum equations 

it follows that the effect of the electric field will be 
of the two fluids yield: 

primarily to change Ad. at, 
plF= -VI%, 

(5) 
STABILITY ANALYSIS ai 

In order to determine & a stability analysis of the 
p2,,= -Vd2. 

vapor film formed over a flat horizontal heater will be 
performed. A Cartesian coordinate system (x, y, z) with Here use is made of the fact that the two fluids are 
its x-y plane coinciding with the vapor-liquid interface stagnant in the steady-state. 
will be used here (see Fig. 3). This interface will be These equations, together with the fact that: 
perturbed. Depending upon the wavelength of these 
perturbations, they will grow steadily in time or av ._ 

oscillate. The latter are stable perturbations while the at’ zov 

former are unstable ones. The wavelength of the per- show that the perturbed velocity fields can be derived 
turbation with the largest growth rate will be deter- from velocity potentials. To determine these potentials, 
mined. use is made of the continuity equation : 

ai;,+al;,+at;,=, 
ax ay az 

Liquid 

which is valid in both regions. In terms of the velocity 
potential 6, this continuity equation can be written as: 

v% = 0 

d 

since (6) 
2 

t = ve. 
Vapor 

In these last equations the subscripts 1 and 2 have been 

t Heater 

omitted to indicate that they are valid in both regions. 
A solution to (6) which has the same time and x-y 
dependence as v] can be written as (see Lamb [7]): 

FIG. 3. Vapor film on a ffat plate heater. ,ic )f 
,$j= _ei(k,x+k,y)[Dekr_ce-kZ] 

k 

It will be assumed that both liquid and vapor are with 
incompressible, inviscid, stagnant and immiscible 
fluids. The vapor is a perfect insulator while the liquid k2 = k: +k;. (7) 

and the heater are assumed to be perfect conductors. 
A potential difference AV exists between these last two 

This gives rise to, say, a &, field of the form: 

giving rise to the uniform electric field E in the vapor ijl, = e”“‘e i(k,x+k,y)[ce-kr+Dekl]. 
(8) 

film and to the surface charge density T upon the heater 
surface and the vapor-liquid interface. Since field and 

The coefficient D in (8) has to be zero since otherwise 

charge density give rise to the force density TE/2 acting 
it would give rise to infinite velocities far away from 

upon the interface, it may be expected that they will 
the interface, which is physically impossible since it 

enter into the stability analysis. 
would assume infinite kinetic energy. Similarly to the 

It is assumed that the interface z = 0 is displaced in 
fii. solution, a B2. solution exists which is irrelevant in 

the z-direction over the amount r~ with: 
the present analysis as will be. found later. 

At the interface the kinematic condition: 
v(x, y, t) = A eiwt eihx +by) . (4) al? . 

This displacement gives rise to perturbations in the 
at = OIZ = i& at z=O (9) 
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has to be satisfied. Substituting (4) and (8) into (9) leads 

to the result: 

?i, = iAoe i(k,x+k,y)e~krezttl, 
(10) 

Substituting this last result into (5) it is found that: 

Au2 
el(krX+k,F)e~k;ei,~r, 

(11) 

The pressure difference across the interface has to 
satisfy Laplace’s condition for capillary phenomena 

Pl -p2 = 0 

in which the electric force density is taken into account. 

The charge density T at the surface of a conductor is 
related to the electric field at the conductor by (see 

Landau and Lifschitz [9]): 

T = s,E. 

The above force condition at the interface therefore 

becomes : 

PI -p2 = c (12) 

It should be noted that the electric force is independent 
of the direction of E: it is always directed in a direction 

away from the liquid and into the vapor. Equation (12) 
has to be satisfied at all times. 

The pressure at the perturbed interface can be 

written as : 

SP”,2 

+-irj_= ul(x,J‘,f)+liz(x,Y,O,t). 

,= * 0 

The variation of the mean curvature of the interface 

due to the displacement q in the z-direction, considering 
only terms of first order in ‘1, is given by : 

- 

The variation of the electrical force density can be 

written as : 
- 

I l-- C,E2- _ ~9 Wt)+b E E, 

2 2 q(7_ ‘g 0 z 
I 

The first term on the R.H.S. accounts for the variation 
of E. away from the interface. However since E. is 
independent of z (the field between two flat plates is 
uniform) the first term is zero. The second one 
represents the contribution E of the change of the field 
configuration due to the change in shape of the 
interface. 

Substituting these last four expressions into (12) and 
keeping only terms of first order in the perturbation 
yields : 

~/+/?~--j?~ = -k2aq-c,E&. (13) 

This can be further simplified by considering that in 
the present problem p2 << pi. Therefore from the 
momentum equations of zero order and of first order 
in the perturbations, it follows that: 

3Po.2 << ti 

(1: i-_ 

and 

i52 << ril. 

Therefore the terms with p2 will be neglected in (13). 
This explains why the V2 field is irrelevant in this 

problem. 
In the steady-state the liquid is stagnant, therefore: 

Evaluating fir from (11) at z = 0 and substituting it in 

(13) together with (14) yields: 

P1W2 
-P1911- kq = -k’oq-EgE&. (15) 

In this last expression the relation between .!?, and q 
has to be determined. 

The perturbed electric field can be derived from a 

potential 4(x, y, z, t) which in the vapor region has to 

satisfy the equation : 

vq=o 

which results from the fact that the field is divergence- 
less (see [9]). A solution of this equation which has 

the same x, y and t dependence as r~ is : 

4 = ,i(k.x+k~y),l,“(Fekz+He-k=), 

The boundary conditions necessary to determine F and 
Hare: 

1 
,1$+&=0 at z = 0 and 

$=O at z=--d. 

The first one expresses the fact that the liquid is a con- 
ductor which is kept at constant potential while being 
deformed. The second one expresses the same thing for 
the rigid heater. This gives as solution: 

Considering that E, = a$/& and E. = &$,/az it is 

found that: 

I?, = -rJEokcothkd at 2 = 0. 

Finally substituting this last expression into (15) yields 
the dispersion relation: 

& =?k3-gk-!&k2COthkd. (16) 
PI PI 

Depending upon the value of k and the physical 
parameters of the system, positive or negative values 
of w2 can be obtained from this equation. Positive 
solutions of w2 give rise to pure oscillations and corre- 
spond to a stable situation. Negative values of w2 
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signify exponential growth of the perturbation and thus 
instability. 

As can be seen from (16) the effect of surface tension 
is stabilizing while the effects of gravity and of the 
electric field are destabilizing. Since wavelength and 
wavenumber are related by: 

k?, 

it also follows from (16) that large wavelengths (small k) 
tend to be unstable (w’ < 0), while small wavelengths 
(large k) tend to be stable (w’ > 0). 

In dimensionless form the dispersion relation can be 
written as : 

plo2d3 
___ = k3d3-B’kd-G2k2d2cothkd (17) 

CT 

in which the Bond number B is defined as: 

B2 _ P1gd2 
(18) 

Q 

and G is given by: 

&,E$d 
G2 = ~ 

0 
(19) 

B2 represents the ratio of the inertia to the surface 
tension forces in the system, while G2 is the ratio of 

the electric forces to the surface tension forces. 
Furthermore for kd >> 1 the dispersion relation can 

be approximated by : 

p1 w2d3 
p= k3d3 - G2k2d2 - B2kd. (20) 

0 

The wavenumber of the wave with maximum growth 
rate can be determined by equating the derivative of 
w2, with respect to kd, equal to zero, yielding: 

k 
d 
d= G2+(G4+3B2)* 

3 ’ (21) 

The solution with the minus sign for the square root 
term is not retained since it would give rise to negative 

values of kd. 
For k, = k, the most dangerous wavenumber in the 

x or y directions is kd/2+. The most dangerous wave- 
length & in the x or y directions is then given by: 

A,, = 
6n2’d 

G2 +(G4+3B2)f’ 
(22) 

This expression will be utilized to determine qmax. 

MAXIMUM HEAT FLUX PREDICTION 

From (22) and (3) it follows that the maximum heat 
flux during pool boiling from a flat horizontal heater 
which is at a different potential than the liquid is 
given by: 

For large values of G2/B this reduces to: 

(24) 

in which the steady-state electric field E. is replaced 

by Al//d. In these last two expressions use is made of 

the fact that the hydrodynamic theory gives the best 
results when instead Of Ad as giVen by (22) &/2’ iS 

substituted (see Sernas et al. [IO]). 
Thus the maximum heat flux during pool boiling in 

the case where gravitational effects are negligible is 

predicted to vary linearly with the electric field (AV/d) 
between heater and liquid and with the square root of 
the electric permittivity and the density of the vapor. 

To compare this theoretical prediction of q,,, with 

observations, reference will be made to the experiments 
of Markels and Durfee [4] with a DC electric field. 
A $in metal tube was internally steam-heated and 
placed horizontally in an aluminum tank filled with 
isopropyl alcohol. Direct voltage was applied between 

the tank (high voltage) and the tube (ground). The value 
of the maximum heat flux as a function of this voltage 
difference was recorded. 

In the process of deriving (23) several assumptions 
were made which have to be satisfied in the experiments 

mentioned. First it was assumed that the liquid-vapor 
system is stagnant, incompressible, inviscid and im- 
miscible. As shown by Lienhard and Wong [ 1 l] the 

first three conditions are readily satisfied in most pool 
boiling experiments. Also the last condition is satisfied 
here since a liquid and its vapor do not mix easily. 
Furthermore upon applying Laplace’s equation (12) at 

the interface it is assumed that no mass transfer occurs 
through the interface. Although evaporation takes 
place there, its effect is negligible(see Dhir and Lienhard 
[12]) when the experiments are performed far from the 
critical state. This is certainly the case in the exper- 
iments of Markels and Durfee. 

Furthermore it is assumed that the liquid is a perfect 
conductor and that the vapor is a perfect insulator. 
The latter condit’ion is certainly satisfied, as pointed 
out by Markels and Durfee [4]. Whether a liquid can 
be considered a good conductor or not depends upon 

the time scale involved in changes of charge density 
occurring in the liquid. The time scale t in which 

responses to a sudden change in charge density occur 
(say at the vapor-liquid interface) is given by (see 
Moore [ 131): 

T = &fPe. 

For isopropyl alcohol: E - 18 x 8.85 10-‘2(F,/m) and 
pe = 1.9 104Qrn, such tha:; 

7= 3 10-6s. 

Thus it is found that the charge relaxation time is much 
smaller than the growth times of the waves considered 

which are of the order of 10m3 s. Therefore the liquid 
may be considered a perfect conductor: the charge 
density at the interface has sufficient time to adapt 
itself to a perturbed shape of the interface. 

Estimating G (based upon d = 1 mm and AV = 
4000V) leads to values of G of 2.5 and thus to values 
of & of 2mm, by means of (22). This means that & 
is much smaller than the radius of the heater. There- 
fore many columns spaced & apart occur at the heater, 
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and therefore the flat plate limit is valid. This decreasing 
of the spacing between the vapor columns due to the 
efectric field is clearly illustrated in the photographs of 
Markels and Durfee [4]. 

Not only for large values of G (and thus AV) but 
also for small values of G the flat plate limit remains 
meaningful. Instead of the Bond number defined upon 
the film thickness d one can also define a Bond number 
Bs based upon the cylinder radius R. In the present 
experiment this leads to a value of about 3 for &. The 
work of Sun and Lienhard [14] on large cylindrical 
heaters and of Lienhard and Dhir [8] on flat plate 
heaters show that qmax for a flat plate (as given by (23) 
for G = 0) is about 1.267 times the value of qrnax for 
large cylindrical heaters. Therefore the G,,, values 
given by (23) have to be divided by this factor. Thus 
also for small values of G (i.e. AI/’ < 2000V in the 
present experiments) the flat plate limit remains a good 
approximation because of the large value of Bs. 

Although for small values of G, the value of kdd is 

not large enough to allow the coth term to be taken 
equal to unity in (17), it should be noted that this term 
is multiplied by G’ and thus the whole term becomes 
negligible. 

It seems therefore that all the conditions underlying 
(23) are satisfied by the experiments such that qmax/1.267 
from (23) may be compared to the measured values of 
qmax. This has been done on Fig. 4. The vapor film 
thickness d here was taken to be equal to 1Smm 
which from the photographs of Markels and Durfee 
[4] shows to be a reasonable guess. Furthermore sg 
was taken to be the dielectric constant of free space, 
ps = l(kg/m3) and h,, = 7.26 lO”(J/kg). 

From Fig..4 it can be seen that theory and experiment 
are in rather good agreement. They both show a linear 
increase of qmax with Af/ for large AV. The agreement 
between theory and experiment is not perfect however. 
This may be due to the choice of the vapor film thick- 
ness. Certainly this distance varies with the heat flux 
and does not remain constant as was assumed here. 

AVXIO-~, v 

FIG. 4. Comparison of observed and calculated values of 
the maximum heat flux. -, qmaX as given by equation (23); 

x , observed values of gmpX of Markels and Durfee [43. 

In particular it increases with qmax. This gives rise to 
smaller values of qmax at large values of AV than would 
be obtained with a constant value of d. At small values 
of AT/ larger values of qmax would be obtained than 
with a constant value of d. This is what is found in 
Fig. 4. The choice of d = 1Smm seems to be a rather 
good average and is acceptable: a film thickness of 
about 30% of the radius is not unusual. 

DISCUSSION AND CONCLUSIONS 

Markels and Durfee [5)‘in their attempt to explain 
their results theoretically started from an anaiysis of 
the forces acting upon a bubble detaching from a 
heater. Due to the complexity of this force analysis 
they did not arrive at estimates for qmax, yet were able 
only to determine regions in which electrostatic forces 
or electrophoretic forces are dominant. However the 
hydrodynamic theory which explains qmax so well for 
ordinary pool boiling is not based upon a force 
analysis, but upon hydrodynamic stability consider- 
ations. As can be seen from the photographs the 
character of the fluid flow is not basically altered by 
the application of a voltage difference: here too regu- 
larly spaced vapor columns occur. It may be expected 
therefore that also here the hydrod~ami~ approach 
will lead to accurate predictions of qmax. This explains 
the good results of the present analysis. 

It may be concluded therefore that also when apply- 
ing a DC electric field between heater and heated 
liquid, the occurrence of the maximum heat flux is 
determined by the instability of the vapor columns 
detaching from the heater surface. When gravitational 
effects can be neglected, it is found that the maximum 
heat flux is proportional to the applied electric field in 
the vapor region, This is in good agreement with 
experiment. 
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APPENDIX 

The variation of the electric field in a vapor column can 
be easily determined. A model consisting of a circular 
cylinder closed at the bottom and extending to infinity at 
the top will be considered. The bottom is at a potential AV 
while the sides of the cylinder are at zero potential. This 
model corresponds well to the case of a vapor column in a 
perfectly conducting liquid originating on a heater at a 
different potential, especially when the film thickness is 
small with respect to the column radius. The electrical 
potential describing the field in the cylinder has to satisfy 
the Laplace equation. In terms of the usual cylindrical 
coordinates a solution of Laplace’s equation in the cylinder 
can be written as (see Jackson [15]): 

[KJ,(pr)+LN,(pr)][Psinm~+Qcosm~][SePz+Ue-Pz]. 

A general solution for the electrical potential 40 inside the 
column is made up of a sum of functions of this type. How- 

ever since the potential remains finite at infinite z (the 
potential of the cylinder remains zero there), the coefficient 
S has to be zero. Furthermore since the potential has to 
remain finite at the z-axis, the coefficient L must be zero. 
The potential has to be zero at r = R. This shows that p 
can take only those values which satisfy: 

Cl%. 
Pm,n = 7 n= 1,2,3... 

The electrical potential can therefore be written as: 

9&-, q.2) = “c 5 Jm(hnr) 
m=O “=I 

xe -P”~~“r[P,,,sinmcp+Q,,,cosmcp]. 

The unknown coefficients P,,,,, and Q,,,,. can be determined 
from the condition that 40 = AV at z = 0. It is not necessary 
to do this however to see how the electric field in the 
cylinder varies with the z-coordinate. The electric field in 
the direction normal to the cylinder (r-direction) at the 
cylinder (r = R) is given by: 

From this it can be seen that the electric field consists of a 
sum of terms which decrease exponentially with z. The 
smallest value of pm.. is pO.l = 2.4. This means that the 
electric field reduces by a factor of 10 over a distance of 
about one column radius. The electric force density there- 
fore reduces by a factor of 100 over one column radius. The 
effect of the potential difference thus remains restricted to 
the column region close to the heater and does not affect 
the stability of the vapor column at larger values of z (which 
remains determined by the Helmholtz instability). 

CHAMPS ELECTROSTATIQUES ET FLUX THERMIQUE MAXIMAL 

R&me-On effectue une etude theorique de l’effet de champs tlectrostatiques sur le flux thermique 
maximal lors de 1’Cbullition g surface libre sur un grand cylindre horizontal de chauffage. On utilise 
I’approche hydrodynamique du flux de chaleur maximal. Un bon accord a 6th obtenu entre les prtvisions 

numiriques et les observations expCrimentales. 

ELEKTROSTATISCHE FELDER UND MAXIMALER WARMESTROM 

Zusammenfassung-Theoretisch wurde der EinfluD elektrostatischer Felder auf den maximalen Wiirme- 
Strom beim Behiiltersieden an einem groDen, waagerechten, zylindrischen Heizkijrper untersucht. Es 
wurden hydrodynamische tiberlegungen zugrundegelegt, und es ergab sich gute tibereinstimmung 

zwischen den theoretischen Berechnungen und den experimentellen Ergebnissen. 

3JIEKTPOCTATMYECKME I-IOJIR B MAKCMMAJIbHbI@ TEI-IJIOBOfi I-IOTOK 

AimoTam - Ilposeneeao TeopeTHvecKoe nccnenoBatnie BnHnmin 3KexmocTaTHyecKHx nonei na 
MaKCHMWIbHbIti TeILfIOBO# llOTOK llpK KHlleHHH B 60nbMOM l-OPH30HTUlbHOM WiJlHHAPHY~CKOM Harpe- 

BaTWE h’hKCHMZiJlbHblti Te~JIOBOti IIOTOK pilCCMaTpHBaeTC%l C I-lijl~XHHaMliY~KOti TOYKH 3PeHHK. 

~OJI)‘YeHO XOpOUlee COOTBeTCTBWe MelKQ’ Tl?O&EUiYWKHMH PaCY~TiLMli H 3KCllePHMeHTElJlbHbIMEI 

&NiHblMH. 


